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Basic inequality

recall basic inequality for convex differentiable f:

fy) > f(x) + Vf(x) (y — )

e first-order approximation of f at x is global underestimator

o (Vf(x),—1) supports epi f at (z, f(x))

what if f is not differentiable?
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Subgradient of a function

g is a subgradient of f (not necessarily convex) at z if

fy) > fx)+g'(y—z) forally

g2, g3 are subgradients at x5; g7 is a subgradient at x4
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e ¢ is a subgradient of f at x iff (g, —1) supports epi f at (x, f(x))

e g is a subgradient iff f(z) + g’ (y — x) is a global (affine)
underestimator of f

e if f is convex and differentiable, V f(x) is a subgradient of f at x

subgradients come up in several contexts:
e algorithms for nondifferentiable convex optimization

e convex analysis, e.q., optimality conditions, duality for nondifferentiable
problems

(if f(y) < f(z) + gt (y — x) for all y, then g is a supergradient)
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Example

f =max{fi, fo}, with f1, fo convex and differentiable

fa(xg): unique subgradient g = V f1(x0)
f1(xo): unique subgradient g = V fa(x0)
o fi(xg) = fa(xp): subgradients form a line segment [V f1(x0), V fa(xo)]
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Subdifferential

e set of all subgradients of f at x is called the subdifferential of f at x,
denoted Jf(x)

e Of(x) is a closed convex set (can be empty)

if f is convex,

e Of(x) is nonempty, for x € relint dom f
o Of(x) ={Vf(x)}, if f is differentiable at x
o if 0f(x) ={g}, then f is differentiable at  and g = V f(x)
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righthand plot shows | J{(x,9) | x € R, g € 0f(x)}
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Subgradient calculus

e weak subgradient calculus: formulas for finding one subgradient

geof(x)

e strong subgradient calculus: formulas for finding the whole
subdifferential 0f(x), i.e., all subgradients of f at x

e many algorithms for nondifferentiable convex optimization require only
one subgradient at each step, so weak calculus suffices

e some algorithms, optimality conditions, etc., need whole subdifferential

e roughly speaking: if you can compute f(x), you can usually compute a

gecof(x)

e we'll assume that f is convex, and z € relint dom f
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Some basic rules

o Of(x) ={Vf(x)}if fis differentiable at x
e scaling: J(af) = adf (if a > 0)

e addition: J(f1 + f2) = 0f1 + df> (RHS is addition of point-to-set
mappings)

e affine transformation of variables: if g(x) = f(Ax +b), then
2g(x) = ATOF(Az +b)

o finite pointwise maximum: if f = max fi, then
i=1,...,m

0f(x) = Co| J{ofi(x) | filx) = f(2)},

1.e., convex hull of union of subdifferentials of ‘active’ functions at x

EE364b, Stanford University



f(x) = max{fi(x),..., fm(x)}, with fi,..., f,, differentiable

0f(x) = Co{Vfi(z) | fi(z) = f(x)}

example: f(z) = ||z|; = max{slz|s; € {~1,1}}

a2 b2 c2 c3

bl %cl
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Pointwise supremum

if f = sup fa,
ac A

el Co| J{0fs(@) | f5(x) = f()} C ()

(usually get equality, but requires some technical conditions to hold, e.g.,
A compact, f, ctsin z and «)

roughly speaking, df(x) is closure of convex hull of union of
subdifferentials of active functions
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Weak rule for pointwise supremum

J = sup fa

acA
e find any (8 for which fg(x) = f(x) (assuming supremum is achieved)

e choose any g € 0fs(x)
e then, g € 0f(x)
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example
f(2) = Amax(A(x)) = sup y' A(x)y

lyll2=1
where A(x) = Ag + 2141+ - -+ x,A,, A; € S~

e f is pointwise supremum of g,(z) = y? A(z)y over ||y|2 =1
e g, is affine in x, with Vg,(z) = (y" A1y, ..., y1 Any)

e hence, 0f(x) 2 Co{Vy, | A(x)y = Amax(A(2))y, [lyll2 =1}
(in fact equality holds here)

to find one subgradient at z, can choose any unit eigenvector y associated
with Apax(A(x)); then

(y" Ary,...,y" Apy) € 0f(x)
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Expectation

e f(r)=E f(x,w), with f convex in z for each w, w a random variable

e for each w, choose any g, € 0¢(z,w) (so w + g, is a function)

e then, g =Eg, € 0f(x)

Monte Carlo method for (approximately) computing f(x) and a g € df(x):
e generate independent samples wq,...,wg from distribution of w

o flx) =~ (1K), flz,wi)

e for each ¢ choose g; € 0, f(x,w;)

e g=(1/K) Zfil g; is an (approximate) subgradient
(more on this later)
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Minimization
define g(y) as the optimal value of

minimize  fo(z)
subject to  fi(z) <wy;, 1=1,..

(f; convex; variable x)

with A* an optimal dual variable, we have

9(z) > g(y) = > N(zi — ui)
i=1
i.e., —A* Is a subgradient of g at y
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Composition

o f(z)=~h(fi(z),..., fr(x)), with h convex nondecreasing, f; convex

e find ¢ € Oh(f1(x),..., fr(x)), g; € Ofi(x)
e then, g =qig1 + - + qrgx € Of (2)

e reduces to standard formula for differentiable h, f;

proof:
fly) = h(fily),. .., felv))
> h(fi(z)+gi (y—a),.... ful@) + g (v — x))
> h(fi(z),.... ful@) +q" (91 (y—2),.... 9L (y — x))
(

f@)+g" (y— )

EE364b, Stanford University

15



Subgradients and sublevel sets

g is a subgradient at z means f(y) > f(z) + ¢ (y — x)

hence f(y) < f(z) = ¢'(y—2) <0
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e f differentiable at xo: V f(xg) is normal to the sublevel set

{z| f(z) < flzo)}

e { nondifferentiable at xy: subgradient defines a supporting hyperplane
to sublevel set through zg
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Quasigradients

g # 0 is a quasigradient of f at = if

g y—z)>0 = f(y) > f(z)

holds for all y

quasigradients at x form a cone
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example:

_aTa;er
T+ d

f(x) (dom f = {z | 'z +d > 0})

g =a— f(xo)cis a quasigradient at x

proof: for ¢!’z 4+ d > 0:

a' (x —x0) > f(xo)c (x — o) = f(x) > f(wo)
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example: degree of a; + ast + -+ + a,t" !
f(a) =min{i | aj o =--- = a, = 0}

g = sign(axs1)ex+1 (with k = f(a)) is a quasigradient at a # 0

proof:
g' (b —a) = sign(ag41)br+1 — |art1]| >0
implies bg41 # 0
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Optimality conditions — unconstrained

recall for f convex, differentiable,
f(x¥) =inf f(z) <= 0=V f(x¥)
generalization to nondifferentiable convex f:

fla*) = inf f(z) <= 0 € Of (&)
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proof. by definition (!)
fly) > fe)+ 01 (y—a*) forally < 0¢€f(z*)

.. .seems trivial but isn't
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Example: piecewise linear minimization

f(x) = maxizl,m,m(aiTx + b;)
* minimizes f <= 0 € df(z*) = Co{a; | al x* + b; = f(x*)}

<> there i1s a \ with

)\iO, ]_T)\Zl, 2&%20
=1

where \; = 0 if al 2* + b; < f(z¥)
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.. . but these are the KKT conditions for the epigraph form

minimize t
subject to alx +b; <t, i=1,...,m

with dual

maximize b1\
subject to A\ >0, ATX =0, 17 =1
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Optimality conditions — constrained

minimize  fo(x)
subject to  fi(z) <0,i=1,...,m
we assume

e f; convex, defined on R™ (hence subdifferentiable)

e strict feasibility (Slater's condition)

x* is primal optimal (\* is dual optimal) iff

0 € dfo(x*) + 3072, Ao fi(x*)
Arfi(x*) =0

... generalizes KKT for nondifferentiable f;
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Directional derivative

directional derivative of f at x in the direction dx is

sy A f(@ A+ hox) — f(x)

can be 400 or —o0

e f convex, finite near x = f'(x;dx) exists

e f differentiable at x if and only if, for some g (= V f(z)) and all dz,

f'(xz;6x2) = gtox (i.e., f'(x;0x) is a linear function of dx)
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Directional derivative and subdifferential

general formula for convex f: f'(x;dz) =
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Descent directions

dx is a descent direction for f at x if f/(x;0x) <0

for differentiable f, dx = —V f(x) is always a descent direction (except

when it is zero)

warning: for nondifferentiable (convex) functions, dx = —g, with

g € Of(x), need not be descent direction

x2

example: f(z) = |z1| + 2|z2]
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Subgradients and distance to sublevel sets

if fis convex, f(z) < f(x), g € f(x), then for small ¢t > 0,

lz —tg = zll2 < [lz = 2|2

thus —g is descent direction for ||x — z||2, for any z with f(z) < f(x)

(e.g., x*)
negative subgradient is descent direction for distance to optimal point

proof: |lz —tg —z[l3 = [lo—z[l3 —2tg" (x — 2) + |93
< lo = zll3 = 2t(f(z) = f(2) + *gl3
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Descent directions and optimality

fact: for f convex, finite near z, either

e 0 € df(x) (in which case x minimizes f), or

e there is a descent direction for f at x

i.e., x is optimal (minimizes f) iff there is no descent direction for f at x

proof: define dzsq = — argmin ||2]|2
z€df(x)

if 0xsq =0, then 0 € 9f(x), so x is optimal; otherwise
f(;02s) = — (Infeqp(a) HZ||2)2 < 0, so dx.q is a descent direction
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idea extends to constrained case (feasible descent direction)

EE364b, Stanford University

df

31



Non-convex and non-smooth functions

Clarke subdifferential of f at = is
dcf(x) = Co {klim Vi(zg) |z — x, Vf(xg) exists}
—> 00

e coincides with the ordinary subdifferential df(x) when f is convex
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Local minima and maxima

minimize f(x)

x is a local minimum or maximum of f(x) = 0¢€ dcf(x).

e f(x) is assumed to be locally Lipschitz, non-convex and
non-differentiable

e the reverse implication does not hold in general

e can be extended to constrained non-convex optimization
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Example

fi(x) = max{—|x|,z—1}

0

N

e r =0 1s alocal maximum and z = % Is a local minimum

e 0€0cf(0)=[-1,1 and 0 € Ocf(3) = [-1,1]
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Clarke subdifferential of a sum

fi(z) = max{z,0} f2(x) = min{z,0} f(z) =fi(z)+f2()

Oc f1(0) = [0,1] Ocf2(0) = [0,1]  Ocf(0) = {1}

e weak sum rule holds: Vo (f1 + f2) € Veofi + Vefs

e equality holds when functions are subdifferentially regular (see lecture
notes for the definition)
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